Enhancers define cortical interneuron types

Principal Investigator: John L. R. Rubenstein
UCSF Neuroscience
Title: "Identification of enhancers whose activity defines cortical interneuron types"
BRAIN Category: Tools for Cells and Circuits (RFA MH-14-216)

Dr. Rubenstein and colleagues plan to identify enhancer molecules specific to particular types of interneurons – that relay neural signals – and use this information to profile distinct cell types and new ways to manipulate genes.

Modular systems measuring brain activity

Principal Investigator: Loren M Frank
Sandler Neurosciences Center, UC San Francisco
Title: " Modular systems for measuring and manipulating brain activity"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Frank and his colleagues will engineer a next-generation, all-in-one neural recording and stimulating system, which can simultaneously monitor thousands of neurons in the brain for several months while also delivering drugs, light or electrical pulses.

Massively Parallel Single Cell Analysis

Principal Investigator: Arnold Kriegstein
UCSF Neuroscience
Title: "Mapping the Developing Human Neocortex by Massively Parallel Single Cell Analysis"
BRAIN Category: Census of Cell Types (RFA MH-14-215)

By combining genetic, molecular and physiological techniques at the single cell level, Dr. Kriegstein and colleagues will classify diverse cell types in the prefrontal cortex of developing human brain tissue.

Skip to toolbar