Integrating neural interfaces & machine intelligence for prosthetics

Principal Investigators: Charles Liu, PhD - USC; Kapil Katyal, PhD - JHU; Richard Andersen, PhD - Caltech
Title: Integrating neural interfaces and machine intelligence for advanced neural prosthetics
BRAIN Category: Neuroengineering and Brain-inspired concepts and design

This collaborative project will decode high-level cognitive actions from neural signals recorded in the parietal cortex of a tetraplegic human, then carry out those intents using a smart robotic prosthesis. Experimental results will be used to construct BMI control algorithms optimized to decode these cognitive signals.

Ultrasonic neuromodulation in vivo

PI: Doris Ying Tsao
California Institute of Technology
Title: "Dissecting human brain circuits in vivo using ultrasonic neuromodulation"
BRAIN category: Next Generation Human Imaging (RFA MH-14-217)

In rodents, monkeys and eventually humans, Dr. Tsao's team will explore use of non-invasive, high resolution ultrasound to impact neural activity deep in the brain and modify behavior.

Mapping Sensory-Motor Pathways

Principal Investigator: Michael Dickinson
Caltech Neuroscience
Title: "Integrative Functional Mapping of Sensory-Motor Pathways"
BRAIN Category: Understanding Neural Circuits (RFA NS-14-009)

Dr. Dickinson will lead an interdisciplinary team to study how the brain uses sensory information to guide movements, by recording the activity of individual neurons from across the brain in fruit flies, as they walk on a treadmill and see and smell a variety of sights and odors

Modular nanophotonic probes

Principal Investigator: Michael Roukes
Caltech Neuroscience
Title: "Modular nanophotonic probes for dense neural recording at single-cell resolution"
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Roukes and his team propose to build ultra-dense, light-emitting and -sensing probes for optogenetics, which could simultaneously record the electrical activity of thousands of neurons in any given region of the brain.

Time-Reversal Optical Focusing

Principal Investigator: Changhuei Yang
Caltech Neuroscience
Title: Time-Reversal Optical Focusing for Noninvasive Optogenetics
BRAIN Category: Large-Scale Recording-Modulation - New Technologies (RFA NS-14-007)

Dr. Yang's team plans to develop a light and sound system that will noninvasively shine lasers on individual cells deep within the brain and activate light-sensitive molecules to precisely guide neuronal firing.

Skip to toolbar